Umoja Biopharma Presents Data on its Engineered Induced Pluripotent Stem Cell Platform at the 2022 International Society for Stem Cell Research Annual Meeting

SEATTLE, June 16, 2022 – Umoja Biopharma, Inc., an immuno-oncology company pioneering off-the-shelf, integrated therapeutics that reprogram immune cells in vivo to treat patients with solid and hematologic malignancies, announced today that it will have a poster presentation at the 2022 International Society for Stem Cell Research (ISSCR) Annual Meeting, to be held June 15-18, 2022 in San Francisco, California.

On Wednesday, June 15th, Principal Scientist & iPSC Team Lead, Teisha Rowland, Ph.D., will give a poster presentation titled, “A Synthetic Cytokine Receptor Platform for Producing Cytotoxic Innate Lymphocytes as Off-the-Shelf Cancer Therapeutics.” The presentation will discuss Umoja’s engineered induced pluripotent stem cell (iPSC) platform, that incorporates the synthetic cytokine receptor system rapamycin-activated cytokine receptor (RACR) platform. Umoja’s engineered iPSCs that are modified to express RACR, called RACR-induced cytotoxic innate lymphoid (iCIL) cells, drive differentiation and expansion of the cells while eliminating the need for expensive cytokines and other raw materials. The RACR platform has the potential to enable cytokine-free manufacturing and engraftment of the engineered cells in the patient without the need for toxic lymphodepletion.

“Despite the advances chimeric antigen receptor T cell therapies have provided to the oncology space, we continue to battle significant challenges that these therapies cannot address, like limited expansion capacity and scalability, manufacturing complexity, variability among patients, and the need for toxic chemotherapy administration to combat patients’ anti-allograft response,” said Andy Scharenberg, M.D., co-founder and Chief Executive Officer of Umoja. “We are developing an engineered iPSC platform, including the RACR platform, to address these challenges by enabling a scalable, virtually unlimited, and simplified manufacturing of engineered, cancer-fighting cytotoxic innate lymphocytes.”

Presentation details:

Presentation Title: A Synthetic Cytokine Receptor Platform for Producing Cytotoxic Innate Lymphocytes as Off-the-Shelf Cancer Therapeutics
Presenting Author: Teisha Rowland, Ph.D., Principal Scientist & iPSC Team Lead at Umoja Biopharma
Poster Number: 529
Poster Presentation Date, Time: Wednesday, June 15, 2022; 6:30-7:30 p.m. PT

About Umoja Biopharma

Umoja Biopharma, Inc. is an early clinical-stage company advancing an entirely new approach to immunotherapy. Umoja Biopharma, Inc. is a transformative multi-platform immuno-oncology company founded with the goal of creating curative treatments for solid and hematological malignancies by reprogramming immune cells in vivo to target and fight cancer. Founded based on pioneering work performed at Seattle Children’s Research Institute and Purdue University, Umoja’s novel approach is powered by integrated cellular immunotherapy technologies including the VivoVec in vivo delivery platform, the RACR/CAR in vivo cell expansion/control platform, and the TumorTag targeting platform. Designed from the ground up to work together, these platforms are being developed to create and harness a powerful immune response in the body to directly, safely, and controllably attack cancer. Umoja believes that its approach can provide broader access to the most advanced immunotherapies and enable more patients to live better, fuller lives. To learn more, visit

About RACR

CAR T cells generated by the body with VivoVec can be expanded and sustained with the rapamycin activated cytokine receptor (RACR) system, an engineered signaling system designed to improve chimeric antigen receptor (CAR) T cell persistence and produce durable anti-tumor responses. The RACR/CAR payload is integrated into the genomic DNA of a patient’s T cells. Rapamycin activates the RACR system resulting in preferential expansion and survival of cancer-fighting T cells. The RACR technology enables a patient’s cells to expand in a manner that resembles a natural immune response that does not require lymphodepletion, promoting durable T cell engraftment. RACR/CAR technology can also be used to enhance ex vivo manufacturing in support of more traditional autologous or allogeneic cell therapy manufacturing processes. To learn more about Umoja’s RACR platform please visit

Media Contact:
Darren Opland, Ph.D.
LifeSci Communications