

Engineering iPSCs with Synthetic Receptors to Drive Differentiation Compatible with Scale-Up

> Teisha Rowland, Ph.D. Principal Scientist Umoja Biopharma

Umoja Biopharma

 Innovative multi-platform immuno-oncology company focused on curative, "off-the-shelf" in vivo and cell therapies for solid tumors

> "Our approach is scalable and flexible — we aspire to create immunotherapies that are accessible and valuable for patients across the full range of solid tumors."

— Andy Scharenberg, CEO Umoja Biopharma

- Four complementary technology platforms designed to address the key limitations of current CAR T-cell therapies:
 - VivoVec (ARM in vivo): Gene therapy product with scalable manufacturing designed to enable in vivo CAR T-cell generation
 - **RACR/CAR (EXPAND)**: Cytokine signaling system could obviate lymphodepletion while enhancing potency and persistence
 - TumorTag (TARGET): Combinatorial targeting of the tumor and its microenvironment to address tumor heterogeneity, antigen escape and immunosuppression applicable across tumor types
 - Engineered iPSCs (ARM ex vivo): iPSC-derived, gene engineered allogeneic, "off-the-shelf" immune cell therapy platform.

Umoja Biopharma's Engineered Allogeneic Therapies Team

Leadership

Ryan Larson, PhD Vice President Head of Immunology Previous: Senior Director at **Bristol Meyer Squibb** Training: PhD and Post-Doc Univ of Washington Immunology

Teisha Rowland, PhD Principal Scientist, Co-Lead iPSC Team Lead Previous: Director of CU Boulder Stem Cell Center Training: PhD UC Santa Barbara

University of Colorado Boulder Stem Cell Research and Technology **Resource** Center

Sam O'Hara, PhD Principal Scientist, Co-Lead Allogeneic Research Lead Previous: As. Principal Scientist at Merck -Cambridge Exploratory Science Center Training: PhD CU Boulder

Cassidy Arnold Engineer, iPSC Team Previous: Regenerative Patch Technologies Training: BS UC Santa Barbara

UCSB Regenerative Patch Technologies

Ryan Koning SRA, Immunology & Gene-Editing Previous: Dr. Mike Jensen's Lab at Seattle Children's Research Institute Training: BS University of Washington

Dave Vereide, PhD Senior Scientist Gene Editing Lead Previous: Jamie Thomson's Lab at Morgridge Institute for Research Training: PhD University of Wisconsin

Ashley Yingst, MS Scientist, iPSC Team Previous: Dr. Michael Verneris's lab at CU Denver Training: MS Des Moines University

212

University of Colorado Anschutz Medical Campus

Dillon Jarrell, PhD Scientist, iPSC Team Previous: Jeffrey Jacot's lab at CU Denver Training: PhD CU Denver

University of Colorado Anschutz Medical Campus

Pipeline: technologies integrated to create therapies

Therapeutic Clinical Development

Candidate Target	Platforms	Indication	Preclinical	Phase 1	Late-Stage Development	Upcoming Milestones
UB-VV200 Multiple/ in vivo TIL	VIvoVec + RACR/TagCAR TumorTag/UB-TT170	Solid Tumors (gyn malignancies)				IND as soon as 2023 ENLIGHTen enrolling
UB-VV100 CD19	VivoVec + RACR/CAR (CD19 CAR)	Hematologic Malignancies				Pre-IND 8/22 IND as soon as 2023
UB-iC200 Multiple	iCIL Cell + RACR/TagCAR TumorTag/TBD	Solid Tumors				IND as soon as 2024 IND as soon as 2024

TumorTag Clinical Development

					Late-Stage	Upcoming
Target	Platforms	Indication	Preclinical	Phase 1	Development	Milestones
UB-TT170/FR	<u> </u>	ENLIGHTEn (osteosarcoma)				ENLIGHTen enrolling
PSMA	TumorTag					
CA IX	TumorTag					
FAP	TumorTag					
Ag-independent	TumorTag					

Umoja is developing an "off-the-shelf," engineered iPSC cell therapy platform to address key challenges in allogeneic cell therapy:

 Eliminating lymphodepletion and enhancing in vivo persistence of cells

 Reducing manufacturing complexity, cost, and variability to make <u>better</u> cells

Key Cytokines are Required for *ex vivo* Cell Manufacturing and *in vivo* Persistence of iPSC-Derived Immune Cells

Improving iPSC Differentiation and Overcoming Lymphodepletion with RACR: <u>Rapamycin Activated Cytokine Receptor</u>

- Rapamycin is an FDA approved small molecule immunosuppressant, functioning by inhibiting mTOR (left).
- Upon rapamycin binding, RACR activates JAK/STAT5 (IL-2/IL-15) signaling to drive cell activation & proliferation (right).
 - → Selective activation and proliferation of engineered cells
- RACR also includes free intracellular FRB to provide rapamycin resistance to the engineered cells, while host immune cells are suppressed

RACR: Engaging a Synthetic Cytokine Receptor for Cell Therapy Products

Synthetic iPSC-Derived <u>Cytotoxic Innate Lymphocytes</u> (iCILs) as Off-the-Shelf Cell Therapeutic Platform

Therapeutic cell Criteria **Clinical Target** Solid & hematologic malignancies CAR Fixed specificity or universal TagCAR 1) RACR knock-in; B2M Knock-out Gene Edits 2) CAR Knock-in 3) Potency enhanced **iPSC** Line In-licensed GMP iPSC line Editing **CRISPR-based Platform** Process Feeder-free, serum free, xeno free

1) RACR2 2) CAR B2M KO

iCIL

RACR: Engaging a Synthetic Cytokine Receptor for Cell Therapy Products

Using ShRED (Synthetic Receptor Enabled Differentiation) to Replace Growth Factor Addition and Minimize Variability of iPSC-HP Differentiation

ShRED

ShRED enhances HP generation and yield <u>well beyond</u> any previous described approach

- When differentiating RACR-engineered iPSCs, RACR was activated via rapalog addition starting at day 0 of differentiation, and HP generation was measured at day 15
- Activating RACR during HP generation increased HP yield >5x compared to nonrapalog-treated controls in conventional cell culture format
- Improved culture conditions further enhanced RACR-driven HP yield (≈125 HP:iPSC)

Resultant iPSC-Derived <u>Cytotoxic Innate Lymphocytes</u> (iCILs) using RACR are Highly Functional & Cytotoxic

- RACR-iCILs are highly functional & cytotoxic:
 - Killing potency equivalent to NKs generated with standard differentiation protocols
 - May use RACR to avoid patient lymphodepletion, allowing for *in vivo* cytokine support of adoptively transferred iCILs

RACR-iCILs Display Improved Innate Cytotoxicity in Several Human Tumor Models

Tumor Only

Untreated NK cells

RACR-Stimulated NK cells (100nM Rapamycin)

5637 Bladder Carcinoma cells RACR-NK cells added at 10:1 effector to target ratio

Similar data has been generated in the Heme, Colon, Breast, Ovarian, and Uterine solid tumor lines.

RACR-iCILs Display Improved Innate Serial Killing in Several Human Tumor Models

Tumor Only Control 10:1 RACR-Stimulated NK cells

10:1 Untreated NK cells 10:1 Cytokine-Stimulated NK cells

= Tumor cell re-challenge

CAR-RACR-iCILs Display Potent and Specific CAR-Driven and Innate Tumor Killing

Engaging the RACR system in RACR-CAR engineered NK cells enhances tumor control in vivo

*NK-92 cells engineered with lentiviral vector to express RACR and TagCAR

RACR: Engaging a Synthetic Cytokine Receptor for Cell Therapy Products

RACR: Engaging a Synthetic Cytokine Receptor for Cell Therapy Products

Scaling-Up Plate-Based Differentiation to a Suspension Culture System

- iPSCs prefer 2D culture (i.e., plates)
- Inefficient to scale up 2D culture systems

Pluripotent iPSC Aggregates in Suspension

- Retain pluripotency marker expression after passaging in 3D (>97% SSEA4+)
- Yields iPSC concentrations of 1-2 x10^6 cells/mL

* SSEA4 is an iPSC marker ²¹ indicative of pluripotency.

Hematopoietic Progenitors Generated in Suspension with High Yields

Harvested HPs

- Reproducibly generate HPs in suspension
 - Average 65-78% CD34+/CD43+/CD45+; Multiple protocols being adapted
- Higher fold HP expansion than 2D control
 - Yield of 9 to 17 HPs per iPSC, compared to 1 for 2D control
- Good final concentration and viability
 - Average 3x10^6 viable cells/mL harvested, 95% viable

Additional synergistic improvements anticipated when combined with ShRED

Generated iNKs Completely in Suspension with High Fold Expansion and High Purity

- Generate high-purity iNKs in suspension
 - >80% CD45+/CD56+/LFA+
- Extremely high iNK fold expansion in suspension
 - Yield of >8,000 iNKs per iPSC (from day 0 to 40)

Additional synergistic improvements anticipated when combined with ShRED

iNKs Generated in Suspension Display High Innate Cytotoxicity

- iNKs were exposed to breast adenocarcinoma cell line at different effector target ratios either in the presence or absence of cytokines (IL-2/IL-15).
- iNKs demonstrated robust clearance of tumor cells with faster clearance with cytokine support.

Umoja-TreeFrog Collaboration Highlights our Innovation and Leadership in Scalable iPS-Derived Immune Cell Manufacturing

Umoja Ворнаяма Vour Body, Your Hope. Your Cure.

Umoja Biopharma and TreeFrog Therapeutics Announce Collaboration to Address Current Challenges Facing Ex Vivo Allogeneic Therapies in Immuno-Oncology

Partnership combines Umoja's technologies in gene-edited iPSCs and immune differentiation for persistent anti-tumor activity with TreeFrog Therapeutics' biomimetic platform for the mass-production of iPSC-derived cell therapies in large-scale bioreactors

- Umoja thesis: scalable manufacturing is <u>essential</u> first step in iPS-derived cell therapies
 - Insufficient cells is at least partially at fault for lack of durable efficacy in current trials
- TreeFrog-enabled bioreactor driven ShRED to generate iCILs will drive COGs for a 1E10 iCIL dose below \$500

Hurdles that Umoja Biopharma is Overcoming in Today's Cancer Immunotherapy Space

Today's Challenges			Umoja's Solutions
•	Today's cell therapies are too expensive , even despite patient assistance programs		 Umoja's iPSC-derived approach removes the vast majority of manufacturing costs
•	Today's oncology treatment—including cell therapies—are often highly toxic for patients to receive		 Umoja's approach removes cytotoxic steps like chemotherapy while preserving patient-specificity in treatment
•	Today's cell therapies are only offered in a small number of hospitals		 Umoja's platform is expected to bring treatment to a broader range of healthcare institutions
٠	Today's cell therapies require lengthy hospital stays away from home		 Umoja's iPSC-derived approach is expected to be a primarily outpatient experience
•	Today's ex vivo manufacturing approach is unreliable and oftentimes ineffective		Umoja's platform generates synthetic cells which we expect to yield a more reliable product
•	Patients cannot survive the manufacturing period of today's cell therapies		 Umoja's iPSC-approach generates cells "off-the-shelf", without any lengthy manufacturing wait

Vision: Umoja Biopharma's RACR-driven ShRED Aims to Address Multiple iPSC-Derived Immune Cell Manufacturing Challenges

EXPAND

- 1. Engaging RACR for improved HP differentiation
- 2. Fully scalable, suspensionbased differentiation process
- 3. Serum-free, feeder-free, xenofree

Our system aims to avoid the use of plates and exhaustive feeder expansions by providing a fully-scalable, xenogeneic-free, RACR-driven iCIL CMC process

27

Thank You

Questions?

